Students can Download Maths Chapter 2 Algebraic Expressions Ex 2.3 Questions and Answers, Notes Pdf, KSEEB Solutions for Class 8 Maths helps you to revise the complete Karnataka State Board Syllabus and score more marks in your examinations.

## Karnataka Board Class 8 Maths Chapter 2 Algebraic Expressions Ex 2.3

Question 1.
Complete the following table of products of two monomials

 First → Second ↓ 3x -6y 4x2 – 8xy 9x2y -11 x3y2 3x 9x2 -18xy 12x3 -24x:y 27x3y -33x4y2 -6y -18xy 36y2 -24x2y 48xy- -54x2y2 66x3y3 4x- I2x3 -24x2y I6x4 -32x3y2 36x4y -44x3y2 -8xy -24x2y 48xy2 -32x3y 64x2y2 -72x3y2 88x4y3 9x2y 27x3y -54x2y2 36x4y -72xy 81x4y2 -99 x3y3 -11 x3y2 -33x4y3 66 x2y3 -44 x5y2 88 x4y3 -99 x5y3 121 x6y4

Question 2.
Find the products
i. (5x + 8) 3x
ii. (-3 pq)(-15 p3q² – q3)
iii. $$\frac{2 x}{5}\left(3 a^{3}-3 b^{3}\right)$$
iv. -x²(x – 15)
i. 5x . 3x + 8.3x = 15x² + 24x

ii. (- 3pq) (- 15p3q² – q3)
= (- 3pq) (- 15p3q²) – (- 3pq)(q3)
= 45 p4q3 + 3 pq4

iii. $$\frac{2 x}{5} \times 3 a^{3}-\frac{2 x}{5} \times 3 b^{3}=\frac{6 x a^{3}}{5}-\frac{6 x b^{3}}{3}$$

iv. (-x²)x – (-x²) 15
= -x3 + 15x²

Question 3.
Simplify the following :
i. (2xy -xy) (3xy – 5)
ii. (3xy² +1) (4xy – 6xy²)
iii. (3x² + 2x) (2x² + 3)
iv. (2m3 + 3m) (5m – 1)
i. 2x y (3xy – 5) – 2xy(3xy – 5) = 6x²y² – 10xy – 6x²y² + 10xy

ii. 3xy² (4xy – 6xy²) +1 (4xy – 6xy²) = 12 x²y3 – 18x²y4 + 4xy – 6xy²

iii. 3x²(2x² + 3) + 2x(2x² + 3] = 6x4 + 9x² + 4x3 + 6x

iv. 2m(5m – 1) + 3m(5m – 1) = 10m4 – 2m+ 15m² – 3m